Tris(trimethylsilyl)methyl-lead(IV) Compounds

F. GLOCKLING and N. M. N. GOWDA *Chemistry Department, The Queen's University, Belfast BT9 SAG, U.K.* Received June 22. 1981

PbMe3/C(SiMe3)3] may be mono- or di-halogenated to PbXMe₂R or PbX₂MeR (R = (Me₃Si)₃C, X = Cl, Br) without cleavage of the R-Pb bond. Similarly electrophilic cleavage of one Pb-Me bond occurs selectively when PbMe,R is treated with acetic or halosubstituted acetic acids yielding monoesters. The esters, PbMe2R(OCOCX3) slowly decomposed in solution to $PbXMe₂R + CO₂ + CX₂$. The formate ester PbMe₂R(OCHO) appeared to disproportionate *in benzene solution to PbMe,R and products derived from PbMeR*(*OCHO*)₂ (viz. Pb + Pb(*OCHO*)₂ + *CO2 + RH + CH4). Other esters also disproportionated to PbMeJ R when heated in aqueous dioxan.*

Introduction

Earlier studies on tris(trimethylsilyl)methylmetal compounds have shown that, for a wide range of metals including Ge, Sn, Hg, Au, Zn, Cd, the $(Me₃Si)₃C$ group is extremely unreactive towards both nucleophiles and electrophiles because of the high steric requirement of this ligand $[1-3]$. For example, $Me₃GeC(SiMe₃)₃$ may be brominated to yield $Me₂BrGeC(SiMe₃)₃$, but under more forcing conditions brominative cleavage of SiMe bonds occurs rather than further Ge-C bond cleavage. Similar low reactivity is observed for $[(Me₃Si)₃C]₂Hg$ which fails to react with HgCl₂ at 150 °C [2] and for $[(Me₃Si)₃C]₂Zn$ which can be steam distilled without decomposition [3]. However, under some circumstances $(Me₃Si)₃C$ —metal compounds show quiteunexpectedly high reactivity and perhaps the most striking example is the cleavage of one $Me₃Si$ group from 6coordinate tin complexes with 8-hydroxyquinoline by heating in ethanol [4] (reaction 1)

 $(Me₃Si)₃C(Me)Sn(C₉H₆NO)₂ + EtOH \rightarrow$

$$
(Me3Si)2CH(Me)Sn(C9H6NO)2 + Me3SiOEt (1)
$$

Similarly [5] $(Me₃Si)₃C(Ph)₂SiI rearranges on reac$ tion with ICl to yield $(Me_3Si)_2(Me_2SiCl)CSiMePh_2$.

In this paper we describe the lead compound $Me₃$. PbR (where $R = (Me₃Si)₃C$ and its reactions with halogens, SnCl₄, acetic and substituted acetic acids, the main objective being to determine whether the reactivity parallels that reported for the germanium [1] and tin $[1, 4]$ analogues.

Experimental

PbMe₃R - PbClMe₃ (9.5 g, 33 mmol) in ether (50 ml) was added to a solution of RLi (prepared *in situ* from RH (10 g, 43 mmol) and LiMe (47 mmol) in THF (250 ml)) and the mixture refluxed for 15 h. Hydrolysis and normal work-up gave PbMe₃R as a white crystalline solid. Yield, 12.6 g (79%). (Found: C, 32.5; H, 7.8 $C_{13}H_{36}PbSi_3$ requires: C, 32.3; H, 7.5%).

Halogena tion reactions

a) With SnC14

Dropwise addition of $SnCl₄$ (1.3 g, 4.8 mmol) to $PbMe₃R$ (2.3 g, 4.7 mmol) in benzene (20 ml) gave after 5 h at 20° C a pale yellow solution containing $SnCl₃Me$ and $PbClMe₂R$. Vacuum sublimation gave first $SnCl₃Me$ (60 °C/0.01 mm) and then PbClMe₂R (120 °C/5 \times 10⁻⁴ mm) as a white solid $(2.2 g)$.

$b)$ With $Cl₂$

A solution of chlorine in benzene was slowly added to $PbMe₃R$ in benzene until the solution remained pale yellow. Work up gave PbC IMe₂R (Found: C, 28.4; H, 6.8; Cl, 7.3. $C_{12}H_{33}$ ClPbSi₃ requires: C, 28.6; H, 6.6; Cl, 7.0%. Excess of chlorine produced $PbCl₂$, $PbCl₂MeR$ and other unidentified products.

PbBrMezR and PbIMezR

Bromine (0.3 g) or iodine (0.5 g) was added to PbMe₃R (0.85 g) in benzene (10 ml) with stirring at 20 °C. PbBrMe₂R, formed a white solid (0.8 g) (Found: C, 26.2, H, 6.1; Br, 14.2. $C_{12}H_{33}BrPbSi_3$ requires: C, 26.3; H, 6.1; Br 14.6%); the iodide $PbIME₂R$ formed a pale yellow solid (Found: C,

TABLE I. Analytical Data on Esters.

		C	н	Cl/Br
PbMe ₂ R(OCOCC1 ₃)	Found	26.6	5.4	17.0
	Calc.	26.6	5.3	16.9
PbMe ₂ R(OCOCBr ₃)	Found	22.3	4.4	31.7
	Calc.	22.0	4.4	31.4
PbMe ₂ R(OCOCHF ₂)	Found	30.0	6.1	
	Calc.	29.8	6.1	
PbMe ₂ R(OCOCHCl ₂)	Found	27.9	5.7	12.0
	Calc.	28.2	5.7	11.9
PbMe ₂ R(OCOCH ₂ F)	Found	31.3	6.6	
	Calc.	30.8	6.5	
$PbMe2R(OCOCH2Cl)$	Found	30.4	6.5	
	Calc.	29.9	6.3	
$PbMe2R(OCOCH2Br)$	Found	28.1	6.0	
	Calc.	27.7	5.8	
PbMe ₂ R(OCOCH ₂ I)	Found	24.9	5.1	
	Calc.	25.7	5.4	
PbMe ₂ R(OCOCH ₃)	Found	31.6	6.9	
	Calc.	31.9	6.9	
PbMe ₂ R(OCHO)	Found	30.5	6.8	
	Calc.	30.4	6.7	

25.1; H, 5.9. $C_{12}H_{33}IPbSi_3$ requires C, 24.2; H, 5.6%).

PbC12 MeR

Dropwise addition of $SnCl₄$ (2.5 ml) to PbMe₃R (3.4 g) in benzene (25 ml) gave an exothermic reaction. After 1 h $SnCl₃Me$ was separated by vacuum sublimation and the residue of PbCl₂MeR purified by crystallisation from benzene as a pale yellow solid, $(3.4 \text{ g}, 90\%)$ (Found: C, 25.7; H, 6.0. C₁₁- $H_{30}Cl_{2}PbSi_{3}$ requires: C, 25.2; H, 5.8%).

PbBr2 MeR

PbBrMe₂R (0.2 g) with Br₂ (0.1 g) or SnBr₄ (0.2 g) in benzene (10 ml) at room temperature gave the dibromide (Found: C, 22.5; H, 5.0. $C_{11}H_{30}Br_2$ PbSi₃ requires: C, 21.5; H,4.9%). The reaction with Br₂ was fast whereas SnBr₄ reacted slowly.

Organolead esters (Table I)

PbMe,R(OCOCF,)

Treatment of PbMe₃R (1.0 g) in CHCl₃ or C_6H_6 (20 ml) with $CF₃CO₂H$ (1.2 g) gave, after 2 h at 20 °C, the monoester as a white solid (1.13 g) , 94%) (Found: C, 29.1; H, 5.6; C₁₄H₃₃F₃O₂PbSi₃ requires: C, 28.9; H, 5.7%).

Other haloesters were similarly prepared by refluxing a solution of PbMesR in benzene with a large excess of the acid followed by vacuum sublimation or distillation of the excess acid. Formation of the acetate required heating $PbMe₃R$ with acetic acid and acetic anhydride in benzene at 100 "C

for 1 week in a sealed tube. Only the formate, $PbMe₂$ -R(OCH0) couldn't be made by direct reaction: it was prepared by ester exchange between the acetate and formic acid at room temperature. When PbMe₃R was heated with excess formic acid in benzene at 100 °C white crystals of $Pb(OCHO)_2$ formed (Found: C, 8.2; H, 0.6. $C_2H_2O_4Pb$ requires: C, 8.1; H, 0.7%) together with $CO₂$, CH₄ and (Me₃Si)₃CH.

Results and Discussion

Whereas PbClMe₃ readily reacts with RLi to form $PbMe₃R$ attempts to bond more than one R group to lead using $PbCl₂Me₂$ and an excess of RLi produced the monochloride PbClMe₂R, presumably due to steric overcrowding. When PbCl₂ was reacted with RLi at 0° C lead was deposited and no organolead(I1) compound could be isolated.

Halogenolysis

Equimolar ratios of PbMesR and chlorine, bromine or iodine reacted at 20 °C in benzene with selective cleavage of one methyl group. With an excess of chlorine or bromine a second-Pb-Me bond was slowly cleaved, but this is not a satisfactory route to the dihalides, $PbMeRX₂$, because much PbX₂ is formed under the conditions employed. Further bromination gave no direct evidence for $PbBr₃R$, though it is probably a reaction intermediate.

PbBr₂MeR + Br₂
$$
\rightarrow
$$
 PbBr₃R + MeBr
\n \rightarrow PbBr₂ + RBr

Thermal decomposition of PbBr₂MeR gave lead, methyl bromide and RBr.

Redistribution reactions with SnCl₄

This type of reaction, extensively studied in relation to tetraorgano-tin and -germanium compounds, has been little investigated for organolead compounds: both dichlorination to $PbCl₂Me₂$ and reduction to $PbCl₂$ have been reported in patent literature. The reaction of $PbMe₃R$ with $SnCl₄$ is exothermic and may be taken to either the monoor di-chloride stage. In the latter case $SnCl₂Me₂$ was also formed.

 $PbMe₃R + SnCl₄ \rightarrow PbClMe₂R + SnCl₃Me$

 PbC lMe₂R + SnCl₄ \rightarrow PbCl₂MeR + SnCl₃Me

 PbC lMe₂R + SnCl₃Me \rightarrow PbCl₂MeR + SnCl₂Me₂

The pure dichloride slowly decomposed to $PbCl₂$ either in chloroform solution (1 week at 20 $^{\circ}$ C) or

Lead(W) Compounds 151

TABLE II. Melting Point and IR Data (KBr) of Organolead Derivatives.

Compound	M.P. (°C)	ν Pb-CH ₃ (cm ⁻¹)	ν COO, ν CO (cm ⁻¹)		
PbMe ₃ R	$263 - 265$	450(ys)			
PbClMe ₂ R	$270 - 275(d)$	455(m)			
PbCl ₂ MeR	>300	460(w)			
PbBrMe ₂ R	$260 - 265(d)$	450(m), 465(m)			
PbBr ₂ MeR	200(d)	457(w)			
Pb IMe ₂ R	245(d)	453(m), 464(m)			
PbMe ₂ R(OCOCF ₃)	$194 - 196(d)$	470(s)	1700 (vs), 1580 (m)		
PbMe ₂ R(OCOCCI ₃)	$155 - 156$	480(s)	1690(vs)		
$PbMe2R(OCOCBI3)$	$145 - 147$	452, 481(s)	1675 (vs), 1610 (m)		
PbMe ₂ R(OCOCHF ₂)	$232 - 236(d)$	455(sh), 472(s)	1670(vs)		
$PbMe2R(OCOCHCl2)$	$148 - 150$	458, 478(s)	1650(ys)		
PbMe ₂ R(OCOCH ₂ F)	$222 - 225(d)$	460, 475(s)	1655(vs)		
$PbMe2R(OCOCH2Cl)$	$250 - 260(d)$	$460(\text{sh})$, $475(\text{m})$	1645(vs)		
		495(sh)			
$PbMe2R(OCOCH2Br)$	$268 - 272$ (d)	455(m), 475(sh)	1645(vs)		
PbMe ₂ R(OCOCH ₂ I)	$64 - 66$	$467(\text{sh})$, $482(\text{m})$	$1700(m)$, $1630(vs)$, $1590(s)$		
PbMe ₂ R(OCOCH ₃)	$183 - 185$	$460(\text{sh})$, $474(\text{m})$	1620(vs)		
PbMe ₂ R(OCHO)	$138 - 140(d)$	462(m), 480(m)	1630(vs)		

as the solid, and it could not be sublimed. The complexity of the organic products, examined by 'H NMR spectroscopy, (multiplet, $3.7-4.4$ δ) suggest that radical intermediates are formed rather than the expected product of reductive elimination, $Me₃Si$ ₃-CMe. The final solution also contained MeCl and RCl. Tin tetrabromide reacted in the same way as $SnCl₄$, but more slowly and the reaction could be controlled to yield either PbBrMe₂R or PbBr₂MeR.

Acetolysis Reactions

In earlier work [6] tetra-alkyllead compounds have been shown to react with acetic and substituted acetic acids to yield either mono- or di-esters, e.g. $PbR'_{3}(OCOCF_{3})$, $PbR'_{2}(OCOCF_{3})_{2}$. The rate of reaction is a function of acid strength, and whereas mono esters are formed at room temperature conversion to diesters requires a temperature of $80-100$ °C. Comprehensive studies on the kinetics of acetolysis of PbMe₄ and PbEt₄ have been reported $[7, 8]$.

In the present work we have found that electrophilic cleavage of one Pb-Me bond occurs selectively when $PbMe₃R$ is treated with acetic acid or halosubstituted acetic acids. Reactions were faster in chloroform than in benzene solution and qualitatively the rates followed the dissociation constants of the acids $(CF_3CO_2H > CCl_3CO_2H > CBr_3CO_2H)$. The mono- and di-halo acids reacted quite rapidly at reflux temperature, but acetic acid required a higher

temperature for a long period. Diester formation was not observed for the lead compounds. For example, the monoester $PbMe₂R(OCOCF₃)$ which readily formed at 20 \degree C, was unaffected by heating with excess CF_3CO_2H for 1 week at 100 °C. For the tin compound $SmMe₂R(OCOCX₃)$ exchange of ester groups was feasible provided an excess of acid was used (e.g. $SmMe₂R(OCOCF₃) + CH₃CO₂H \rightleftharpoons SmMe₂$ - $R(OCOCH₃) + CF₃CO₂H)$. By contrast for the analogous lead esters exchange only occurred to yield the ester derived from the stronger acid. This observation is unexpected and suggests that there may be a structural difference between $SmMe₂R(OCOCX₃)$ and $PbMe₂R(OCOCX₃)$ compounds. When $PbMe₂R$ -(OCOCBr3) was prepared in chloroform solution it slowly decomposed to $PbBrMe_2R$ and $PbClMe_2R$ suggesting (as in the case of tin analogues) decarboxylation followed by carbene elimination and halide exchange: $PbMe₂R(OCOCBr₃) \rightarrow CO₂ + PbMe₂$ $RCBr_3 \rightarrow \text{CBr}_2 + \text{PbBrMe}_2R$. The trichloroacetate behaved in the same way. Properties of the monoesters are listed in Table II.

The monoformate ester when heated with formic acid in benzene decomposed mainly by reductive elimination to $Pb(OCHO)₂$, though some lead was also formed, together with $PbMe₄$ and $PbMe₃R$. Carbon dioxide, methane and $(Me_3Si)_3CH$ were also identified, and there were two minor unidentified volatile compounds produced which had

	δ (SiMe)	δ (PbMe)	$\delta{\rm (CH_{n}X_{3-n})}$	2J(PbH)
PbMe ₃ R	A 0.17	0.91		53
	B 0.23	0.91		53
PbCIME ₂ R	A 0.28	1.62		54
	B 0.23	1.36		54
PbCl ₂ MeR	A 0.40	2.29		65
	B 0.25	1.74		67
PbBrMe ₂ R	A 0.29	1.72		52
	B 0.23	1.46		53
PbBr ₂ MeR	A 0.41	2.48		61
	B 0.27	1.97		61
Pb IMe ₂ R	A 0.30	1.86		50
	B 0.23	1.62		50
PbMe ₂ R(OCOCF ₃)	A 0.26	1.73		55
	B 0.11	1.44		55
PbMe ₂ R(OCOCCI ₃)	A 0.27	1.76		54
	B 0.15	1.48		55
PbMe ₂ R(OCOCB _{I3})	A 0.28	1.76		55
	B 0.17	1.49		56
PbMe ₂ R(OCOCHF ₂)	A 0.25	1.71	5.79t ^b	56
	B 0.14	1.48	5.58t ^b	57
$PbMe2R(OCOCHCl2)$	A 0.25	1.70	5.87	56
	B 0.17	1.48	5.78	57
PbMe ₂ R(OCOCH ₂ F)	A 0.24	1.68	$4.70d$ ^c	58
	B 0.17	1.52	$4.53d$ ^c	59
$PbMe2R(OCOCH2Cl)$	A 0.24	1.66	4.01	58
	B 0.18	1.49	3.79	59
PbMe ₂ R(OCOCH ₂ Br)	A 0.24	1.65	3.83	58
	B0.18	1.50	3.58	59
PbMe ₂ R(OCOCH ₂ I)	A 0.24	1.64	3.68	58
	B 0.19	1.50	3.40	60
PbMe ₂ R(OCOCH ₃)	A 0.23	1.59	1.97	60
	B 0.22	1.53	1.97	62
PbMe ₂ R(OCHO)	A 0.23	1.64	8.18	59
	B 0.19	1.52	8.34	60

TABLE III. ¹H NMR Data (A in CDCl₃, B in C₆D₆ at 35 °C).⁸

 a_d = doublet, t = triplet. $b^2 J(HF) = 55 Hz$. $c^2 J(HF) = 48 Hz$.

longer g.l.c. retention times than $(Me₃Si)₃CH$. We have attempted to rationalise these observations in terms of:

a) an initial redistribution reaction followed by reductive elimination of $Pb(OCHO)_2$ in the presence of free formic acid

 $2PbMe₂R(OCHO) \rightleftharpoons PbMe₃R + PbMeR(OCHO)₂$

$$
\downarrow \text{HCO}_2\text{H}
$$

Pb(OCHO)₂ + CH₄ +
(Me₃Si)₃CH + CO₂

b) reductive elimination of $(Me_3Si)_3CH$ and $CO₂$ with subsequent decomposition of $PbMe₂$

 $PbMe₂R(OCHO) \rightarrow (Me₃Si)₃CH + CO₂ + PbMe₂$ */* / $Pb + PbMe₄$

NMR Spectra

Proton and 13C NMR spectra are listed in Tables III and IV. 'H chemical shifts were quite strongly solvent dependent between deuterochloroform and deuterobenzene, the differences being greatest for the trihalosubstituted esters. A downfield shift in δ (PbMe) was observed on going from PbMe₃R to its derivatives in both solvents, with $2J(209Pb-1H)$ in the range 52-62 Hz, the largest coupling constant being observed for the acetate, PbMe₂R(OCOCH₃). The MeSi proton shifts in C_6D_6 ($\delta = 0.23-0.28$ ppm) were little affected by the substituent, though successive substitution of F, Cl or Br in the series $PbMe₂$ - $R(OCOCH_nX_{3-n})$ (n = 0-3) gave a uniform upfield shift with increasing halide substitution. In CDCl₃ a small opposite trend was apparent.

In the ¹³C NMR spectra δ (PbMe) showed a large downfield shift between $PbMe₃R$ and its derivatives whilst $\frac{1}{2}$ (PbMe) values were lowest for the trifluoroacetate and highest for the acetate and dichloride.

Lead(W) Compounds

TABLE IV. 13 C NMR Spectra in CDCl₃ at 35 °C.

	$\delta(SiMe)$	δ (PbMe)	$\delta(C_{\text{quat.}})$	δ (CHX)	δ (CO)	$\mathbf{1}_{\text{J(PeMe)}}$	3J(PbMe)
PbMe ₃ R (60 °C)	5.4	6.0	8.6			201	51
PbClMe ₂ R	4.8	23.6	30.5			189	43
PbBrMe ₂ R	4.9	23.1	$29.7^{\rm a}$			184	42
PbCl ₂ MeR	4.6	39.6	58.3			225	63
PbMe ₂ R(OCOCF ₃)	4.6	25.4	33.0	$114.9q^{b}$	161.4g	161	40
PbMe ₂ R(OCOCCl ₃)(50 °C)	4.7	25.5	33.1	92.0	165.3	164	40
PbMe ₂ R(OCOCB ₁₃)	4.7	25.4	32.7	128.2	165.9	167	39
PbMe ₂ R(OCOCHF ₂)	4.6	24.8	31.3	$107.3t^c$	$167.1t^c$	176	39
$PbMe2R(OCOCHCl2)$	4.8	24.9	31.3^e	65.9	168.5	175	40
PbMe ₂ R(OCOCH ₂ F)	4.7	24.3	29.6	77.7d ^f	172.6d ^f	198	39
$PbMe2R(OCOCH2Cl)$	4.8	24.5	30.0	42.0^{g}	169.4	197	39
$PbMe2R(OCOCH2Br)$	4.8	24.4	29.9	28.4	169.2	197	39
PbMe ₂ R(OCOCH ₃)	4.8	23.5	28.0	22.2	164.4	225	38
$PbMe2R(OCOCH3)(C6D6)$	5.0	23.3	26.7	21.9	158.6	240	35
PbMe ₂ R(OCHO)	4.9	24.3	$29.4^{\rm h}$		166.8	208	39
$PbMe2R(OCHO)(C6D6)$	4.9	23.9	28.1		166.1	222	37

 $\frac{1}{2}I(fD, C) = \frac{1}{2}I(fD, F) = 200, \frac{2I(GF)}{I(fD, F)} = 38.$ $\frac{1}{2}I(fD, F) = 250, \frac{2I(GF)}{I(fD, F)} = 26.$ $\frac{1}{2}I(fD, C) = 182.$ $\frac{1}{2}I(fD, F) = 184.$ $J(T) = 21.83$ $J(T) = 24.0$ h $J(T) = 24.0$ h $J(T) = 24.66$.

Neither the SiMe 13 C chemical shifts nor 3 J(PbC) couplings were significantly affected by structural changes. The dichloro compound PbCl₂MeR gave the greatest $\mathcal{S}(\mathbf{PbMa})$ and $\mathcal{S}(\mathbf{C} \rightarrow \mathbf{Va})$ values, as expect-....
1

Comparison of H and 13 C NMR parameters of compounds MMe₃R, MClMe₂R and MBrMe₂R (M = Ge, Sn, Pb) shows large differences in $\delta(MMe)$ in both ¹H and ¹³C spectra (δ PbMe) $\geq \delta$ (GeMe) \geq $\delta(SnMe)$. There is a roughly linear relationship between 1 J(PbC) and 2 J(PbH) for the series of PbMe₂- $R(OCOCH_nX_{3-n})$ $(X = F, Cl; n = 0-3)$; extrapolation to $^1J(PbC) = 0$ gives a large intercept of 40 Hz for ²J(PbH), similar to observations by Singh [9].

Few of the compounds examined in this work showed parent ions in their mass spectra, but strong (p-Me)+ ions were present in most cases. Other lead containing ions commonly observed include $PbMe₂R⁺$, $PbMeR$ ⁺, $PbCSi₂Me⁺₅$, $PbCSi₂Me⁺₄$, $PbMe⁺$, $Pb⁺$. The spectra of $PbMe_2R(OCOCF_3)$, $PbMeR(OCOCHF_2)$ and PbMe₂R(OCOMe) contained ions due to elimination of $CO₂$ from the parent and most spectra showed a metastable peak corresponding to the process: $PbMe₂R⁺ \rightarrow C₂H₆ + PbR⁺.$

References

- 1 F. Glockling, P. Harriott and W. K. Ng,J. Chem. *Res., (S)* 12, (M) 275, (1979). 2 F. Glockling, N. S. Hosmane, T. J. King, V. B. Mahale,
- L. Magos and J. J. Swindall, J. Chem. *Res., (S)* 116, (M) $101 (1077)$ 3 C. Eaborn, N. Retta and J. D. Smith, J. *Organometal.*
- *Chem., 190, 101 (1980).*
- *4* F. Glockling and W. K. Ng, J. *Chem. Sot. Dalton,* 1101 (1981). 5 C. Eaborn and S. P. Hopper, *J. Organometal. Chem., 192,*
- *27 (1980). 6* F. Hiiber, H. Horn and H. J. Haupt, 2. *Naturforsch.,*
- *22B, 918* (1967).
- 7 N. A. Clinton, H. C. Gardner and J. K. Kochi, J. Organo*metal. Chem., 56, 221 (1973). 8 N.* A. Clinton and J. K. Kochi, *J. Organometal. Chem., 56,*
- *243 (1973). 9 G.* Singh, *J. Organometal.* Chem., 99, 251 (1975).
-