Tris(trimethylsilyl)methyl-lead(IV) Compounds

F. GLOCKLING and N. M. N. GOWDA Chemistry Department, The Queen's University, Belfast BT9 5AG, U.K. Received June 22, 1981

 $PbMe_3[C(SiMe_3)_3]$ may be mono- or di-halogenated to $PbXMe_2R$ or PbX_2MeR ($R = (Me_3Si)_3C$, X = Cl, Br) without cleavage of the R-Pb bond. Similarly electrophilic cleavage of one Pb-Me bond occurs selectively when $PbMe_3R$ is treated with acetic or halosubstituted acetic acids yielding monoesters. The esters, $PbMe_2R(OCOCX_3)$ slowly decomposed in solution to $PbXMe_2R + CO_2 + CX_2$. The formate ester $PbMe_2R(OCHO)$ appeared to disproportionate in benzene solution to $PbMe_3R$ and products derived from $PbMeR(OCHO)_2$ (viz. $Pb + Pb(OCHO)_2 + CO_2 + RH + CH_4$). Other esters also disproportionated to $PbMe_3R$ when heated in aqueous dioxan.

Introduction

Earlier studies on tris(trimethylsilyl)methylmetal compounds have shown that, for a wide range of metals including Ge, Sn, Hg, Au, Zn, Cd, the (Me₃Si)₃C group is extremely unreactive towards both nucleophiles and electrophiles because of the high steric requirement of this ligand [1-3]. For example, Me₃GeC(SiMe₃)₃ may be brominated to yield Me₂BrGeC(SiMe₃)₃, but under more forcing conditions brominative cleavage of SiMe bonds occurs rather than further Ge-C bond cleavage. Similar low reactivity is observed for $[(Me_3Si)_3C]_2$ Hg which fails to react with HgCl₂ at 150 °C [2] and for $[(Me_3Si)_3C]_2$ Zn which can be steam distilled without decomposition [3]. However, under some circumstances (Me₃Si)₃C-metal compounds show guite unexpectedly high reactivity and perhaps the most striking example is the cleavage of one Me₃Si group from 6-coordinate tin complexes with 8-hydroxyquinoline by heating in ethanol [4] (reaction 1)

 $(Me_3Si)_3C(Me)Sn(C_9H_6NO)_2 + EtOH \rightarrow$

$$(Me_3Si)_2CH(Me)Sn(C_9H_6NO)_2 + Me_3SiOEt$$
 (1)

Similarly [5] $(Me_3Si)_3C(Ph)_2SiI$ rearranges on reaction with ICl to yield $(Me_3Si)_2(Me_2SiCI)CSiMePh_2$.

In this paper we describe the lead compound Me_3 -PbR (where R = $(Me_3Si)_3C$ and its reactions with

halogens, $SnCl_4$, acetic and substituted acetic acids, the main objective being to determine whether the reactivity parallels that reported for the germanium [1] and tin [1, 4] analogues.

Experimental

PbMe₃R – PbClMe₃ (9.5 g, 33 mmol) in ether (50 ml) was added to a solution of RLi (prepared *in situ* from RH (10 g, 43 mmol) and LiMe (47 mmol) in THF (250 ml)) and the mixture refluxed for 15 h. Hydrolysis and normal work-up gave PbMe₃R as a white crystalline solid. Yield, 12.6 g (79%). (Found: C, 32.5; H, 7.8 $C_{13}H_{36}PbSi_{3}$ requires: C, 32.3; H, 7.5%).

Halogenation reactions

a) With $SnCl_4$

Dropwise addition of SnCl₄ (1.3 g, 4.8 mmol) to PbMe₃R (2.3 g, 4.7 mmol) in benzene (20 ml) gave after 5 h at 20 °C a pale yellow solution containing SnCl₃Me and PbClMe₂R. Vacuum sublimation gave first SnCl₃Me (60 °C/0.01 mm) and then PbClMe₂R (120 °C/5 × 10⁻⁴ mm) as a white solid (2.2 g).

b) With Cl_2

A solution of chlorine in benzene was slowly added to $PbMe_3R$ in benzene until the solution remained pale yellow. Work up gave $PbClMe_2R$ (Found: C, 28.4; H, 6.8; Cl, 7.3. $C_{12}H_{33}ClPbSi_3$ requires: C, 28.6; H, 6.6; Cl, 7.0%. Excess of chlorine produced $PbCl_2$, $PbCl_2MeR$ and other unidentified products.

$PbBrMe_2R$ and $PbIMe_2R$

Bromine (0.3 g) or iodine (0.5 g) was added to $PbMe_3R$ (0.85 g) in benzene (10 ml) with stirring at 20 °C. $PbBrMe_2R$, formed a white solid (0.8 g) (Found: C, 26.2, H, 6.1; Br, 14.2. $C_{12}H_{33}BrPbSi_3$ requires: C, 26.3; H, 6.1; Br 14.6%); the iodide $PbIMe_2R$ formed a pale yellow solid (Found: C,

TABLE I. Analytical Data on Esters.

		С	Н	Cl/Br
PbMe ₂ R(OCOCCl ₃)	Found	26.6	5.4	17.0
-	Calc.	26.6	5.3	16.9
$PbMe_2R(OCOCBr_3)$	Found	22.3	4.4	31.7
	Calc.	22.0	4.4	31.4
$PbMe_2R(OCOCHF_2)$	Found	30.0	6.1	
-	Calc.	29.8	6.1	
$PbMe_2R(OCOCHCl_2)$	Found	27.9	5.7	12.0
	Calc.	28.2	5.7	11.9
$PbMe_2R(OCOCH_2F)$	Found	31.3	6.6	
	Calc.	30.8	6.5	
$PbMe_2R(OCOCH_2Cl)$	Found	30.4	6.5	
	Calc.	29.9	6.3	
$PbMe_2R(OCOCH_2Br)$	Found	28.1	6.0	
	Calc.	27.7	5.8	
$PbMe_2R(OCOCH_2I)$	Found	24.9	5.1	
	Calc.	25.7	5.4	
$PbMe_2R(OCOCH_3)$	Found	31.6	6.9	
	Calc.	31.9	6.9	
PbMe ₂ R(OCHO)	Found	30.5	6.8	
-	Calc.	30.4	6.7	

25.1; H, 5.9. $C_{12}H_{33}IPbSi_3$ requires C, 24.2; H, 5.6%).

PbCl₂MeR

Dropwise addition of $SnCl_4$ (2.5 ml) to PbMe₃R (3.4 g) in benzene (25 ml) gave an exothermic reaction. After 1 h SnCl₃Me was separated by vacuum sublimation and the residue of PbCl₂MeR purified by crystallisation from benzene as a pale yellow solid, (3.4 g, 90%) (Found: C, 25.7; H, 6.0. C₁₁-H₃₀Cl₂PbSi₃ requires: C, 25.2; H, 5.8%).

PbBr₂MeR

PbBrMe₂R (0.2 g) with Br₂ (0.1 g) or SnBr₄ (0.2 g) in benzene (10 ml) at room temperature gave the dibromide (Found: C, 22.5; H, 5.0. $C_{11}H_{30}Br_2$ PbSi₃ requires: C, 21.5; H,4.9%). The reaction with Br₂ was fast whereas SnBr₄ reacted slowly.

Organolead esters (Table I)

$PbMe_2R(OCOCF_3)$

Treatment of PbMe₃R (1.0 g) in CHCl₃ or C₆H₆ (20 ml) with CF₃CO₂H (1.2 g) gave, after 2 h at 20 °C, the monoester as a white solid (1.13 g, 94%) (Found: C, 29.1; H, 5.6; C₁₄H₃₃F₃O₂PbSi₃ requires: C, 28.9; H, 5.7%).

Other haloesters were similarly prepared by refluxing a solution of $PbMe_3R$ in benzene with a large excess of the acid followed by vacuum sublimation or distillation of the excess acid. Formation of the acetate required heating $PbMe_3R$ with acetic acid and acetic anhydride in benzene at 100 °C

for 1 week in a sealed tube. Only the formate, PbMe₂-R(OCHO) couldn't be made by direct reaction: it was prepared by ester exchange between the acetate and formic acid at room temperature. When PbMe₃R was heated with excess formic acid in benzene at 100 °C white crystals of Pb(OCHO)₂ formed (Found: C, 8.2; H, 0.6. C₂H₂O₄Pb requires: C, 8.1; H, 0.7%) together with CO₂, CH₄ and (Me₃Si)₃CH.

Results and Discussion

Whereas PbClMe₃ readily reacts with RLi to form PbMe₃R attempts to bond more than one R group to lead using PbCl₂Me₂ and an excess of RLi produced the monochloride PbClMe₂R, presumably due to steric overcrowding. When PbCl₂ was reacted with RLi at 0 $^{\circ}$ C lead was deposited and no organo-lead(II) compound could be isolated.

Halogenolysis

Equimolar ratios of PbMe₃R and chlorine, bromine or iodine reacted at 20 °C in benzene with selective cleavage of one methyl group. With an excess of chlorine or bromine a second-Pb-Me bond was slowly cleaved, but this is not a satisfactory route to the dihalides, PbMeRX₂, because much PbX₂ is formed under the conditions employed. Further bromination gave no direct evidence for PbBr₃R, though it is probably a reaction intermediate.

$$PbBr_2MeR + Br_2 \rightarrow PbBr_3R + MeBr$$
$$\rightarrow PbBr_2 + RBr$$

Thermal decomposition of $PbBr_2MeR$ gave lead, methyl bromide and RBr.

Redistribution reactions with SnCl₄

This type of reaction, extensively studied in relation to tetraorgano-tin and -germanium compounds, has been little investigated for organolead compounds: both dichlorination to $PbCl_2Me_2$ and reduction to $PbCl_2$ have been reported in patent literature. The reaction of $PbMe_3R$ with $SnCl_4$ is exothermic and may be taken to either the monoor di-chloride stage. In the latter case $SnCl_2Me_2$ was also formed.

 $PbMe_3R + SnCl_4 \rightarrow PbClMe_2R + SnCl_3Me$

 $PbClMe_2R + SnCl_4 \rightarrow PbCl_2MeR + SnCl_3Me$

 $PbClMe_2R + SnCl_3Me \rightarrow PbCl_2MeR + SnCl_2Me_2$

The pure dichloride slowly decomposed to $PbCl_2$ either in chloroform solution (1 week at 20 °C) or

Lead(IV) Compounds

TABLE II. Melting Point and IR Data (KBr) of Organolead Derivatives.

Compound	M.P. (°C)	ν Pb-CH ₃ (cm ⁻¹)	$\nu COO, \nu CO (cm^{-1})$		
PbMe ₃ R	263-265	450(vs)			
PbClMe ₂ R	270-275(d)	455(m)			
PbCl ₂ MeR	>300	460(w)			
PbBrMe ₂ R	260-265(d)	450(m), 465(m)			
PbBr ₂ MeR	200(d)	457(w)			
PbIMe ₂ R	245(d)	453(m), 464(m)			
PbMe ₂ R(OCOCF ₃)	194-196(d)	470(s)	1700(vs), 1580(m)		
PbMe ₂ R(OCOCCI ₃)	155-156	480(s)	1690(vs)		
PbMe ₂ R(OCOCBI ₃)	145-147	452, 481(s)	1675(vs), 1610(m)		
PbMe ₂ R(OCOCHF ₂)	232-236(d)	455(sh), 472(s)	1670(vs)		
PbMe ₂ R(OCOCHCl ₂)	148-150	458, 478(s)	1650(vs)		
PbMe ₂ R(OCOCH ₂ F)	222-225(d)	460, 475(s)	1655(vs)		
PbMe ₂ R(OCOCH ₂ Cl)	250-260(d)	460(sh), 475(m)	1645(vs)		
		495(sh)			
PbMe ₂ R(OCOCH ₂ Br)	268-272(d)	455(m), 475(sh)	1645(vs)		
PbMe ₂ R(OCOCH ₂ I)	64–66	467(sh), 482(m)	1700(m), 1630(vs), 1590(s)		
PbMe ₂ R(OCOCH ₃)	183-185	460(sh), 474(m)	1620(vs)		
PbMe ₂ R(OCHO)	138-140(d)	462(m), 480(m)	1630(vs)		

as the solid, and it could not be sublimed. The complexity of the organic products, examined by ¹H NMR spectroscopy, (multiplet, 3.7–4.4 δ) suggest that radical intermediates are formed rather than the expected product of reductive elimination, (Me₃Si)₃-CMe. The final solution also contained MeCl and RCl. Tin tetrabromide reacted in the same way as SnCl₄, but more slowly and the reaction could be controlled to yield either PbBrMe₂R or PbBr₂MeR.

Acetolysis Reactions

In earlier work [6] tetra-alkyllead compounds have been shown to react with acetic and substituted acetic acids to yield either mono- or di-esters, e.g. $PbR'_{3}(OCOCF_{3})$, $PbR'_{2}(OCOCF_{3})_{2}$. The rate of reaction is a function of acid strength, and whereas mono esters are formed at room temperature conversion to diesters requires a temperature of 80-100 °C. Comprehensive studies on the kinetics of acetolysis of PbMe₄ and PbEt₄ have been reported [7, 8].

In the present work we have found that electrophilic cleavage of one Pb-Me bond occurs selectively when PbMe₃R is treated with acetic acid or halosubstituted acetic acids. Reactions were faster in chloroform than in benzene solution and qualitatively the rates followed the dissociation constants of the acids (CF₃CO₂ H > CCl₃CO₂H > CBr₃CO₂H). The mono- and di-halo acids reacted quite rapidly at reflux temperature, but acetic acid required a higher temperature for a long period. Diester formation was not observed for the lead compounds. For example, the monoester $PbMe_2R(OCOCF_3)$ which readily formed at 20 °C, was unaffected by heating with excess CF₃CO₂H for 1 week at 100 °C. For the tin compound $SnMe_2R(OCOCX_3)$ exchange of ester groups was feasible provided an excess of acid was used (e.g. $SnMe_2R(OCOCF_3) + CH_3CO_2H \rightleftharpoons SnMe_2$ - $R(OCOCH_3) + CF_3CO_2H$). By contrast for the analogous lead esters exchange only occurred to yield the ester derived from the stronger acid. This observation is unexpected and suggests that there may be a structural difference between $SnMe_2R(OCOCX_3)$ and $PbMe_2R(OCOCX_3)$ compounds. When $PbMe_2R$. (OCOCBr₃) was prepared in chloroform solution it slowly decomposed to PbBrMe₂R and PbClMe₂R suggesting (as in the case of tin analogues) decarboxylation followed by carbene elimination and halide exchange: $PbMe_2R(OCOCBr_3) \rightarrow CO_2 + PbMe_2$ - $RCBr_3 \rightarrow CBr_2 + PbBrMe_2R$. The trichloroacetate behaved in the same way. Properties of the monoesters are listed in Table II.

The monoformate ester when heated with formic acid in benzene decomposed mainly by reductive elimination to $Pb(OCHO)_2$, though some lead was also formed, together with $PbMe_4$ and $PbMe_3R$. Carbon dioxide, methane and $(Me_3Si)_3CH$ were also identified, and there were two minor unidentified volatile compounds produced which had

	δ(SiMe)	δ(PbMe)	$\delta(CH_nX_{3-n})$	² J(PbH)
PbMe ₃ R	A 0.17	0.91		53
	B 0.23	0.91		53
PbClMe ₂ R	A 0.28	1.62		54
	B 0.23	1.36		54
PbCl ₂ MeR	A 0.40	2.29		65
	B 0.25	1.74		67
PbBrMe ₂ R	A 0.29	1.72		52
-	B 0.23	1.46		53
PbBr ₂ MeR	A 0.41	2.48		61
-	B 0.27	1.97		61
PbIMe ₂ R	A 0.30	1.86		50
-	B 0.23	1.62		50
PbMe ₂ R(OCOCF ₃)	A 0.26	1.73		55
2	B 0.11	1.44		55
PbMe ₂ R(OCOCCI ₃)	A 0.27	1.76		54
2	B 0.15	1.48		55
PbMe ₂ R(OCOCBI ₃)	A 0.28	1.76		55
2	B 0.17	1.49		56
$PbMe_2R(OCOCHF_2)$	A 0.25	1.71	5.79t ^b	56
2 . 2	B 0.14	1.48	5.58t ^b	57
$PbMe_2R(OCOCHCl_2)$	A 0.25	1.70	5.87	56
	B 0.17	1.48	5.78	57
$PbMe_2R(OCOCH_2F)$	A 0.24	1.68	4.70d ^c	58
	B 0.17	1.52	4.53d ^c	59
$PbMe_2R(OCOCH_2Cl)$	A 0.24	1.66	4.01	58
	B 0.18	1.49	3.79	59
$PbMe_2R(OCOCH_2Br)$	A 0.24	1.65	3.83	58
	B 0.18	1.50	3.58	59
$PbMe_2R(OCOCH_2I)$	A 0.24	1.64	3.68	58
	B 0.19	1.50	3.40	60
$PbMe_2R(OCOCH_3)$	A 0.23	1.59	1.97	60
	B 0.22	1.53	1.97	62
PbMe ₂ R(OCHO)	A 0.23	1.64	8.18	59
	B 0.19	1.52	8.34	60

TABLE III. ¹H NMR Data (A in CDCl₃, B in C₆D₆ at 35 °C).^a

^ad = doublet, t = triplet. ^{b 2}J(HF) = 55 Hz. ^{c 2}J(HF) = 48 Hz.

longer g.l.c. retention times than $(Me_3Si)_3CH$. We have attempted to rationalise these observations in terms of:

a) an initial redistribution reaction followed by reductive elimination of $Pb(OCHO)_2$ in the presence of free formic acid

 $2PbMe_2R(OCHO) \rightleftharpoons PbMe_3R + PbMeR(OCHO)_2$

$$\downarrow HCO_2H$$

$$Pb(OCHO)_2 + CH_4 + (Me_3Si)_3CH + CO_2$$

b) reductive elimination of $(Me_3Si)_3CH$ and CO_2 with subsequent decomposition of PbMe₂

 $PbMe_2R(OCHO) \rightarrow (Me_3Si)_3CH + CO_2 + PbMe_2$

NMR Spectra

Proton and ¹³C NMR spectra are listed in Tables III and IV. ¹H chemical shifts were quite strongly solvent dependent between deuterochloroform and deuterobenzene, the differences being greatest for the trihalosubstituted esters. A downfield shift in δ (PbMe) was observed on going from PbMe₃R to its derivatives in both solvents, with ²J(²⁰⁹Pb-¹H) in the range 52-62 Hz, the largest coupling constant being observed for the acetate, PbMe₂R(OCOCH₃). The MeSi proton shifts in C₆D₆ ($\delta = 0.23-0.28$ ppm) were little affected by the substituent, though successive substitution of F, Cl or Br in the series PbMe₂-R(OCOCH_nX_{3-n}) (n = 0-3) gave a uniform upfield shift with increasing halide substitution. In CDCl₃ a small opposite trend was apparent.

In the ¹³C NMR spectra δ (PbMe) showed a large downfield shift between PbMe₃R and its derivatives whilst ¹J(PbMe) values were lowest for the trifluoroacetate and highest for the acetate and dichloride.

Lead(IV) Compounds

TABLE IV. ¹³C NMR Spectra in CDCl₃ at 35 °C.

	δ(SiMe)	δ(PbMe)	$\delta(C_{quat.})$	δ(CHX)	δ(CO)	¹ J(PeMe)	³ J(PbMe)
PbMe ₃ R (60 °C)	5.4	6.0	8.6			201	51
PbClMe ₂ R	4.8	23.6	30.5			189	43
PbBrMe ₂ R	4.9	23.1	29.7 ^a			184	42
PbCl ₂ MeR	4.6	39.6	58.3			225	63
$PbMe_2R(OCOCF_3)$	4.6	25.4	33.0	114.99 ^b	161.4q	161	40
PbMe ₂ R(OCOCCl ₃) (50 °C)	4.7	25.5	33.1	92.0	165.3	164	40
PbMe ₂ R(OCOCBr ₃)	4.7	25.4	32.7	128.2	165.9	167	39
$PbMe_2R(OCOCHF_2)$	4.6	24.8	31.3	107.3t ^c	167.1t ^c	176	39
$PbMe_2R(OCOCHCl_2)$	4.8	24.9	31.3 ^e	65.9	168.5	175	40
$PbMe_2R(OCOCH_2F)$	4.7	24.3	29.6	$77.7d^{f}$	172.6d ^f	198	39
PbMe ₂ R(OCOCH ₂ Cl)	4.8	24.5	30.0	42.0 ^g	169.4	197	39
$PbMe_2R(OCOCH_2Br)$	4.8	24.4	29.9	28.4	169.2	197	39
$PbMe_2R(OCOCH_3)$	4.8	23.5	28.0	22.2	164.4	225	38
$PbMe_2R(OCOCH_3)(C_6D_6)$	5.0	23.3	26.7	21.9	158.6	240	35
PbMe ₂ R(OCHO)	4.9	24.3	29.4 ^h		166.8	208	39
$PbMe_2R(OCHO)(C_6D_6)$	4.9	23.9	28.1		166.1	222	37

^{a 1}J(Pb C_{quat.}) = 165. ^{b 1}J(CF) = 290, ²J(CF) = 38. ^{c 1}J(CF) = 250, ²J(CF) = 26. ^{e 1}J(Pb C_{quat.}) = 182. ^{f 1}J(CF) = 184, ²J(CF) = 21. ^{g 3}J(PbCHCl) = 34. ^{h 1}J(Pb C_{quat.}) = 166.

Neither the SiMe ¹³C chemical shifts nor ³J(PbC) couplings were significantly affected by structural changes. The dichloro compound PbCl₂MeR gave the greatest δ (PbMe) and δ (C_{quaternary}) values, as expected.

Comparison of ¹H and ¹³C NMR parameters of compounds MMe₃R, MClMe₂R and MBrMe₂R (M = Ge, Sn, Pb) shows large differences in δ (MMe) in both ¹H and ¹³C spectra (δ PbMe) $\geq \delta$ (GeMe) $\geq \delta$ (SnMe). There is a roughly linear relationship between ¹J(PbC) and ²J(PbH) for the series of PbMe₂-R(OCOCH_nX_{3-n}) (X = F, Cl; n = 0-3); extrapolation to ¹J(PbC) = 0 gives a large intercept of 40 Hz for ²J(PbH), similar to observations by Singh [9].

Few of the compounds examined in this work showed parent ions in their mass spectra, but strong $(p-Me)^+$ ions were present in most cases. Other lead containing ions commonly observed include PbMe₂R⁺, PbMeR⁺, PbCSi₂Me⁺₅, PbCSi₂Me⁺₄, PbMe⁺, Pb⁺. The spectra of PbMe₂R(OCOCF₃), PbMeR(OCOCHF₂) and PbMe₂R(OCOMe) contained ions due to elimination of CO₂ from the parent and most spectra showed a metastable peak corresponding to the process: $PbMe_2R^+ \rightarrow C_2H_6 + PbR^+$.

References

- 1 F. Glockling, P. Harriott and W. K. Ng, J. Chem. Res., (S) 12, (M) 275, (1979).
- 2 F. Glockling, N. S. Hosmane, T. J. King, V. B. Mahale, L. Magos and J. J. Swindall, *J. Chem. Res.*, (S) 116, (M) 1201 (1977).
- 3 C. Eaborn, N. Retta and J. D. Smith, J. Organometal. Chem., 190, 101 (1980).
- 4 F. Glockling and W. K. Ng, J. Chem. Soc. Dalton, 1101 (1981).
- 5 C. Eaborn and S. P. Hopper, J. Organometal. Chem., 192, 27 (1980).
- 6 F. Hüber, H. Horn and H. J. Haupt, Z. Naturforsch., 22B, 918 (1967).
- 7 N. A. Clinton, H. C. Gardner and J. K. Kochi, J. Organometal. Chem., 56, 227 (1973).
- 8 N. A. Clinton and J. K. Kochi, J. Organometal. Chem., 56, 243 (1973).
- 9 G. Singh, J. Organometal. Chem., 99, 251 (1975).